- MAVROS外部控制例程
- 代码
- 代码解释
MAVROS外部控制例程
官网英文原文地址:http://dev.px4.io/ros-mavros-offboard.html
注意: 外部控制是危险的。如果在真机上操作,确保可以在出错的时候切换回手动控制。
下面的教程是基本的外部控制,通过MAVROS应用在Gazebo模拟的Iris四旋翼上。在教程最后,应该会得到与下面视频相同的结果,即缓慢起飞到高度2米。
代码
在ROS包中创建offb_node.cpp文件,并粘贴下面内容:
/**
* @file offb_node.cpp
* @brief offboard example node, written with mavros version 0.14.2, px4 flight
* stack and tested in Gazebo SITL
*/
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
mavros_msgs::State current_state;
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "offb_node");
ros::NodeHandle nh;
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>
("mavros/state", 10, state_cb);
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>
("mavros/setpoint_position/local", 10);
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>
("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>
("mavros/set_mode");
//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);
// wait for FCU connection
while(ros::ok() && current_state.connected){
ros::spinOnce();
rate.sleep();
}
geometry_msgs::PoseStamped pose;
pose.pose.position.x = 0;
pose.pose.position.y = 0;
pose.pose.position.z = 2;
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if( current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.success){
ROS_INFO("Offboard enabled");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
}
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
return 0;
}
提示: 本过程需要对ROS有一定的了解。
创建工作空间后需要source devel/setup.bash
,否则会出现找不到package的情况,要想保证工作空间已配置正确需确保ROS_PACKAGE_PATH环境变量包含你的工作空间目录,采用echo $ROS_PACKAGE_PATH
命令查看是否包含了你创建的package的路径,此操作也可以通过直接在.bashrc文件最后添加路径的方式解决。
代码解释
#include <ros/ros.h>
#include <geometry_msgs/PoseStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
mavros_msgs
包含有所有用于MAVROS服务和主题的自定义消息。所有服务和主题以及它们所对应的消息类型参照文档mavros wiki。
mavros_msgs::State current_state;
void state_cb(const mavros_msgs::State::ConstPtr& msg){
current_state = *msg;
}
创建一个简单的回调函数,它可以保存飞控的当前状态。我们可以用它检查连接状态,解锁状态以及外部控制标志。
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/state", 10, state_cb);
ros::Publisher local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>("mavros/setpoint_position/local", 10);
ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming");
ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode");
我们实例化一个用来发布指令位置的发布器,一个请求解锁的客户端和一个请求改变模式的客户端。注意,对你自己的系统,根据启动文件中节点名字的不同,”mavros”前面的部分会有所不同。
//the setpoint publishing rate MUST be faster than 2Hz
ros::Rate rate(20.0);
px4飞行栈在外部控制指令之间有500ms的时限,如果超过了时限,那么飞控将会切换回进入外部控制模式之前的模式。这正是考虑可能的延迟,发布频率必须高于2Hz的原因。这同样也是推荐从位置控制模式进入外部控制模式的原因,如果外部控制模式发生故障,飞行器将会停止动作并处于盘旋状态。
// wait for FCU connection
while(ros::ok() && current_state.connected){
ros::spinOnce();
rate.sleep();
}
在发布之前,需要等待MAVROS和飞控建立连接。一旦接收到心跳包,该循环就会立即退出。
geometry_msgs::PoseStamped pose;
pose.pose.position.x = 0;
pose.pose.position.y = 0;
pose.pose.position.z = 2;
即使px4飞行栈工作在航空常用的NED坐标系,MAVROS仍然会将这些坐标转换到标准的ENU坐标系,反之亦然。这是我们将Z设置为+2的原因。
//send a few setpoints before starting
for(int i = 100; ros::ok() && i > 0; --i){
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
在进入外部控制模式之前,就必须开始发布指令,否则模式切换会被拒绝。这里,100是个随意选取的值。
mavros_msgs::SetMode offb_set_mode;
offb_set_mode.request.custom_mode = "OFFBOARD";
设置自定义模式为OFFBOARD
,参考支持的模式列表
mavros_msgs::CommandBool arm_cmd;
arm_cmd.request.value = true;
ros::Time last_request = ros::Time::now();
while(ros::ok()){
if( current_state.mode != "OFFBOARD" &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( set_mode_client.call(offb_set_mode) &&
offb_set_mode.response.success){
ROS_INFO("Offboard enabled");
}
last_request = ros::Time::now();
} else {
if( !current_state.armed &&
(ros::Time::now() - last_request > ros::Duration(5.0))){
if( arming_client.call(arm_cmd) &&
arm_cmd.response.success){
ROS_INFO("Vehicle armed");
}
last_request = ros::Time::now();
}
}
local_pos_pub.publish(pose);
ros::spinOnce();
rate.sleep();
}
剩下的代码比较好理解。在解锁并起飞后,不断地请求切换至外部控制模式。在请求之间间隔5秒,不至于让飞控响应不过来。在同样的循环里,以合适的频率持续发送位姿指令。
提示: 出于解释的目的,这份代码经过了简化。在更大的系统中,创建一个新的负责周期性发送目标指令的线程往往更加有用。