• 10、聚类算法

    上篇主要介绍了一种机器学习的通用框架—集成学习方法,首先从准确性和差异性两个重要概念引出集成学习“好而不同”的四字真言,接着介绍了现阶段主流的三种集成学习方法:AdaBoost、Bagging及Random Forest,AdaBoost采用最小化指数损失函数迭代式更新样本分布权重和计算基学习器权重,Bagging通过自助采样引入样本扰动增加了基学习器之间的差异性,随机森林则进一步引入了属性扰动,最后简单概述了集成模型中的三类结合策略:平均法、投票法及学习法,其中Stacking是学习法的典型代表。本篇将讨论无监督学习中应用最为广泛的学习算法—聚类。

    10、聚类算法

    聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。聚类则是试图将数据集的样本划分为若干个互不相交的类簇,从而每个簇对应一个潜在的类别。

    聚类直观上来说是将相似的样本聚在一起,从而形成一个类簇(cluster)。那首先的问题是如何来度量相似性(similarity measure)呢?这便是距离度量,在生活中我们说差别小则相似,对应到多维样本,每个样本可以对应于高维空间中的一个数据点,若它们的距离相近,我们便可以称它们相似。那接着如何来评价聚类结果的好坏呢?这便是性能度量,性能度量为评价聚类结果的好坏提供了一系列有效性指标。