• 二十四、多个 Y 轴

    二十四、多个 Y 轴

    在这篇 Matplotlib 教程中,我们将介绍如何在同一子图上使用多个 Y 轴。 在我们的例子中,我们有兴趣在同一个图表及同一个子图上绘制股票价格和交易量。

    为此,首先我们需要定义一个新的轴域,但是这个轴域是ax2仅带有x轴的『双生子』。

    这足以创建轴域了。我们叫它ax2v,因为这个轴域是ax2加交易量。

    现在,我们在轴域上定义绘图,我们将添加:

    1. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)

    我们在 0 和当前交易量之间填充,给予它蓝色的前景色,然后给予它一个透明度。 我们想要应用幽冥毒,以防交易量最终覆盖其它东西,所以我们仍然可以看到这两个元素。

    所以,到现在为止,我们的代码为:

    1. import matplotlib.pyplot as plt
    2. import matplotlib.dates as mdates
    3. import matplotlib.ticker as mticker
    4. from matplotlib.finance import candlestick_ohlc
    5. from matplotlib import style
    6. import numpy as np
    7. import urllib
    8. import datetime as dt
    9. style.use('fivethirtyeight')
    10. print(plt.style.available)
    11. print(plt.__file__)
    12. MA1 = 10
    13. MA2 = 30
    14. def moving_average(values, window):
    15. weights = np.repeat(1.0, window)/window
    16. smas = np.convolve(values, weights, 'valid')
    17. return smas
    18. def high_minus_low(highs, lows):
    19. return highs-lows
    20. def bytespdate2num(fmt, encoding='utf-8'):
    21. strconverter = mdates.strpdate2num(fmt)
    22. def bytesconverter(b):
    23. s = b.decode(encoding)
    24. return strconverter(s)
    25. return bytesconverter
    26. def graph_data(stock):
    27. fig = plt.figure()
    28. ax1 = plt.subplot2grid((6,1), (0,0), rowspan=1, colspan=1)
    29. plt.title(stock)
    30. plt.ylabel('H-L')
    31. ax2 = plt.subplot2grid((6,1), (1,0), rowspan=4, colspan=1, sharex=ax1)
    32. plt.ylabel('Price')
    33. ax2v = ax2.twinx()
    34. ax3 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1)
    35. plt.ylabel('MAvgs')
    36. stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1y/csv'
    37. source_code = urllib.request.urlopen(stock_price_url).read().decode()
    38. stock_data = []
    39. split_source = source_code.split('\n')
    40. for line in split_source:
    41. split_line = line.split(',')
    42. if len(split_line) == 6:
    43. if 'values' not in line and 'labels' not in line:
    44. stock_data.append(line)
    45. date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
    46. delimiter=',',
    47. unpack=True,
    48. converters={0: bytespdate2num('%Y%m%d')})
    49. x = 0
    50. y = len(date)
    51. ohlc = []
    52. while x < y:
    53. append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
    54. ohlc.append(append_me)
    55. x+=1
    56. ma1 = moving_average(closep,MA1)
    57. ma2 = moving_average(closep,MA2)
    58. start = len(date[MA2-1:])
    59. h_l = list(map(high_minus_low, highp, lowp))
    60. ax1.plot_date(date[-start:],h_l[-start:],'-')
    61. ax1.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='lower'))
    62. candlestick_ohlc(ax2, ohlc[-start:], width=0.4, colorup='#77d879', colordown='#db3f3f')
    63. ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=7, prune='upper'))
    64. ax2.grid(True)
    65. bbox_props = dict(boxstyle='round',fc='w', ec='k',lw=1)
    66. ax2.annotate(str(closep[-1]), (date[-1], closep[-1]),
    67. xytext = (date[-1]+4, closep[-1]), bbox=bbox_props)
    68. ## # Annotation example with arrow
    69. ## ax2.annotate('Bad News!',(date[11],highp[11]),
    70. ## xytext=(0.8, 0.9), textcoords='axes fraction',
    71. ## arrowprops = dict(facecolor='grey',color='grey'))
    72. ##
    73. ##
    74. ## # Font dict example
    75. ## font_dict = {'family':'serif',
    76. ## 'color':'darkred',
    77. ## 'size':15}
    78. ## # Hard coded text
    79. ## ax2.text(date[10], closep[1],'Text Example', fontdict=font_dict)
    80. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)
    81. ax3.plot(date[-start:], ma1[-start:], linewidth=1)
    82. ax3.plot(date[-start:], ma2[-start:], linewidth=1)
    83. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
    84. where=(ma1[-start:] < ma2[-start:]),
    85. facecolor='r', edgecolor='r', alpha=0.5)
    86. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
    87. where=(ma1[-start:] > ma2[-start:]),
    88. facecolor='g', edgecolor='g', alpha=0.5)
    89. ax3.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    90. ax3.xaxis.set_major_locator(mticker.MaxNLocator(10))
    91. ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
    92. for label in ax3.xaxis.get_ticklabels():
    93. label.set_rotation(45)
    94. plt.setp(ax1.get_xticklabels(), visible=False)
    95. plt.setp(ax2.get_xticklabels(), visible=False)
    96. plt.subplots_adjust(left=0.11, bottom=0.24, right=0.90, top=0.90, wspace=0.2, hspace=0)
    97. plt.show()
    98. graph_data('GOOG')

    会生成:

    二十四、多个 Y 轴 - 图1

    太棒了,到目前为止还不错。 接下来,我们可能要删除新y轴上的标签,然后我们也可能不想让交易量占用太多空间。 没问题:

    首先:

    1. ax2v.axes.yaxis.set_ticklabels([])

    上面将y刻度标签设置为一个空列表,所以不会有任何标签了。

    译者注:所以将标签删除之后,添加新轴的意义是什么?直接在原轴域上绘图就可以了。

    接下来,我们可能要将网格设置为false,使轴域上不会有双网格:

    1. ax2v.grid(False)

    最后,为了处理交易量占用很多空间,我们可以做以下操作:

    1. ax2v.set_ylim(0, 3*volume.max())

    所以这设置y轴显示范围从 0 到交易量的最大值的 3 倍。 这意味着,在最高点,交易量最多可占据图形的33%。 所以,增加volume.max的倍数越多,空间就越小/越少。

    现在,我们的图表为:

    1. import matplotlib.pyplot as plt
    2. import matplotlib.dates as mdates
    3. import matplotlib.ticker as mticker
    4. from matplotlib.finance import candlestick_ohlc
    5. from matplotlib import style
    6. import numpy as np
    7. import urllib
    8. import datetime as dt
    9. style.use('fivethirtyeight')
    10. print(plt.style.available)
    11. print(plt.__file__)
    12. MA1 = 10
    13. MA2 = 30
    14. def moving_average(values, window):
    15. weights = np.repeat(1.0, window)/window
    16. smas = np.convolve(values, weights, 'valid')
    17. return smas
    18. def high_minus_low(highs, lows):
    19. return highs-lows
    20. def bytespdate2num(fmt, encoding='utf-8'):
    21. strconverter = mdates.strpdate2num(fmt)
    22. def bytesconverter(b):
    23. s = b.decode(encoding)
    24. return strconverter(s)
    25. return bytesconverter
    26. def graph_data(stock):
    27. fig = plt.figure()
    28. ax1 = plt.subplot2grid((6,1), (0,0), rowspan=1, colspan=1)
    29. plt.title(stock)
    30. plt.ylabel('H-L')
    31. ax2 = plt.subplot2grid((6,1), (1,0), rowspan=4, colspan=1, sharex=ax1)
    32. plt.ylabel('Price')
    33. ax2v = ax2.twinx()
    34. ax3 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1)
    35. plt.ylabel('MAvgs')
    36. stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1y/csv'
    37. source_code = urllib.request.urlopen(stock_price_url).read().decode()
    38. stock_data = []
    39. split_source = source_code.split('\n')
    40. for line in split_source:
    41. split_line = line.split(',')
    42. if len(split_line) == 6:
    43. if 'values' not in line and 'labels' not in line:
    44. stock_data.append(line)
    45. date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
    46. delimiter=',',
    47. unpack=True,
    48. converters={0: bytespdate2num('%Y%m%d')})
    49. x = 0
    50. y = len(date)
    51. ohlc = []
    52. while x < y:
    53. append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
    54. ohlc.append(append_me)
    55. x+=1
    56. ma1 = moving_average(closep,MA1)
    57. ma2 = moving_average(closep,MA2)
    58. start = len(date[MA2-1:])
    59. h_l = list(map(high_minus_low, highp, lowp))
    60. ax1.plot_date(date[-start:],h_l[-start:],'-')
    61. ax1.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='lower'))
    62. candlestick_ohlc(ax2, ohlc[-start:], width=0.4, colorup='#77d879', colordown='#db3f3f')
    63. ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=7, prune='upper'))
    64. ax2.grid(True)
    65. bbox_props = dict(boxstyle='round',fc='w', ec='k',lw=1)
    66. ax2.annotate(str(closep[-1]), (date[-1], closep[-1]),
    67. xytext = (date[-1]+5, closep[-1]), bbox=bbox_props)
    68. ## # Annotation example with arrow
    69. ## ax2.annotate('Bad News!',(date[11],highp[11]),
    70. ## xytext=(0.8, 0.9), textcoords='axes fraction',
    71. ## arrowprops = dict(facecolor='grey',color='grey'))
    72. ##
    73. ##
    74. ## # Font dict example
    75. ## font_dict = {'family':'serif',
    76. ## 'color':'darkred',
    77. ## 'size':15}
    78. ## # Hard coded text
    79. ## ax2.text(date[10], closep[1],'Text Example', fontdict=font_dict)
    80. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)
    81. ax2v.axes.yaxis.set_ticklabels([])
    82. ax2v.grid(False)
    83. ax2v.set_ylim(0, 3*volume.max())
    84. ax3.plot(date[-start:], ma1[-start:], linewidth=1)
    85. ax3.plot(date[-start:], ma2[-start:], linewidth=1)
    86. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
    87. where=(ma1[-start:] < ma2[-start:]),
    88. facecolor='r', edgecolor='r', alpha=0.5)
    89. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
    90. where=(ma1[-start:] > ma2[-start:]),
    91. facecolor='g', edgecolor='g', alpha=0.5)
    92. ax3.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    93. ax3.xaxis.set_major_locator(mticker.MaxNLocator(10))
    94. ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
    95. for label in ax3.xaxis.get_ticklabels():
    96. label.set_rotation(45)
    97. plt.setp(ax1.get_xticklabels(), visible=False)
    98. plt.setp(ax2.get_xticklabels(), visible=False)
    99. plt.subplots_adjust(left=0.11, bottom=0.24, right=0.90, top=0.90, wspace=0.2, hspace=0)
    100. plt.show()
    101. graph_data('GOOG')

    到这里,我们差不多完成了。 这里唯一的缺陷是一个好的图例。 一些线条是显而易见的,但人们可能会好奇移动均值的参数是什么,我们这里是 10 和 30。 添加自定义图例是下一个教程中涉及的内容。